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Abstract Model predictive control (MPC) algorithm based

on state-space equations was applied to ship dynamic

positioning control system. A state estimator was designed

to solve the problem that not all the states used can be

measured to improve the control accuracy of the system.

Through simulation in MATLAB�, this paper analyzed

and compared the model predictive controller with or

without constraints and the state estimator. Simulation

results on a supply ship verify the effectiveness of this

proposed model predictive control algorithm based on

state-space equations and show that the MPC controller

with the state estimator can improve the control effect of

dynamic positioning system of ships.

Keywords Ship � Dynamic positioning system � Model

predictive control algorithm � State-space equations � The
state estimator

1 Introduction

The dynamic positioning (DP) system is a controlled sys-

tem that can automatically control the thrusters to keep the

ship in the desired position or heading or make the ship to

track desired trajectories. The control system is the core of

the DP system, whose functioning depending critically on

its control algorithm. Along with the advancement of

control theory, the DP technology has gone through rapid

development, and three generations of products have been

introduced to the market. The first generation of DP sys-

tems used the PID control algorithm, which succeeded in

controlling the three degree of freedom in the horizontal

plane. But it had inevitable shortcomings such as the dif-

ficulties in selecting PID control coefficient, the limitations

imposed by varying linear models. The second generation

of DP systems combined the optimal control with the

Kalman filter to solve the problem of phase lag, and that

led to substantial improvement in performance and exten-

sion in function, see for example [1] and [2]. However,

some shortcomings, such as the requirement for accurate

models or large amount of calculation workload had lim-

ited the full potential of DP systems. With the rapid

development of computing, sensing, and communication

technologies, more complex control strategies and theories

were proposed. DP systems have been developed from

autocontrol into intelligent control as the third generation

of DP products was introduced. For example, backstepping

algorithms are designed in [3, 4], a nonlinear programming

algorithm is tested in [5, 6], passivity-based techniques and

advanced control theory are used in [7–9], sliding mode

observer [10, 11], output feedback control [12, 13], inverse

linear matrix inequality method [14], robust control

[15–17] have all been explored. As mentioned in these

references, the positioning accuracy and energy consump-

tion have really been improved.

Model predictive control (MPC) is an advanced control

methodology that has been widely accepted in industry. Its

capability in dealing with constraints for nonlinear and

multi-input–multi-output systems makes it very appealing.

By incorporating a model and using it to forecast the future

response, it allows the control to predict and correct. It has

been widely studied in recent years. In 2001, Konsberg

released the Green DP system which used MPC. In
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[18, 19], MPC was applied to DP system and the results

were satisfactory. In [20], the constraints existed in DP

were taken into account. However, the aforementioned

work assumed that all the states used in the DP control

system can be measured. To deal with the problems that

not all states are measured and noises exist in the mea-

surements, this paper proposes a model predictive con-

troller with a state estimator to improve the control

performance of the system. Simulations in Matlab are used

to test and verify the effectiveness of the control algorithm.

2 Mathematical model of the ship

Under the marine environment disturbance, surface vessels

will generally have six degrees of freedom (DOF) (surge,

sway, heave, pitch, roll, yaw). For DP vessels, we usually

focus on horizontal motions that means we need to control

surge, sway, and yaw motions. To describe the motion of

vessels, two coordinate systems are used: north-east-down

(NED) frame OE � XEYEZE and body frame coordinate

ob � xbybzb, see Fig. 1. The position and heading vector of

the vessel in the NED frame is g ¼ x; y;w½ �T and the

velocity vector in the body frame is m ¼ u; v; r½ �T . There-
fore, the horizontal kinematic equations of the vessel can

be written as

_g ¼ JðwÞm; ð1Þ

the rotation matrix JðwÞ is given by

JðwÞ ¼
cosw � sinw 0

sinw cosw 0

0 0 1

2
4

3
5: ð2Þ

For convenience, it is assumed that the DP vessel is

operating at low-speed, and the DP thrusters only respond

to low-frequency motions. According to [21], the gener-

alized equation of motion for DP vessel can be expressed

as:

M _vþ Dv ¼ sE þ sT; ð3Þ

where sE is the vector of environment forces and moments;

sT is the thrust of DP thrusters; M is the inertia matrix and

D is damping matrix.

To avoid the complicated calculation and simplify the

design of controller, the linear low-frequency state-space

model of the DP vessel using small-angle theory is defined

as:

_XL ¼ AL XL þ BLsþ GLxL

yL ¼ CL XL þ vL
; ð4Þ

where the state vector XL ¼ ½ gT vT �T ; s is the forces and
moments of surge and sway; xL is unmodeled three-di-

mensional disturbance vector including wind, wave, and

current; yL is position and heading observation vector

(output vector); vL is the measurement Gaussian white

noise. The coefficient matrices in (4) are defined as

AL ¼ 03 � 3 I3 �3

03 � 3 �M�1 D

� �
; BL ¼ 03�3

M�1

� �
;

GL ¼ 03 � 3

M�1

� �
; CL ¼ I3 � 3 03 � 3½ �:

ð5Þ

3 Algorithm of MPC

The model predictive control is a control algorithm based

on model; the basic elements contain predictive model

(internal model), receding optimization, and feedback

correction. The basic principle can be described as follows:

when the new measurement information is obtained at each

sampling time, the information will be used to solve an

open loop optimization problem defined in a prediction

horizon to yield a control sequence whose first component

will be used to act on the system, then the process is

repeated as new measurement becomes available. The

basic structure of MPC is shown in Fig. 2.

While model predictive control is applied to ship

dynamic positioning system, first the low-frequency

motion information should be separated from comprehen-

sive position information of the vessel, then to control

according to the information. The linear low-frequency

state-space model of the DP vessel (see Eq. 4) should be

converted into discrete state equation, as follows:

X E North

East

Ship position
(x, y)

Shipheading

xb
Surge

yb
Sway

Earth-fixed reference coordinate

Body frame coordinate

OE

YE

Yaw

ob

Fig. 1 The NED frame and body frame coordinate system Fig. 2 The basic structure of model predictive control
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xkþ1 ¼ A xk þ B uk þ Gxk

yk ¼ C xk þ vk
ð6Þ

the initial state x0 ¼ x; xk is the state variables’ vector

about positions and velocities (surge, sway, and yaw) at

time k. uk is the control input vector; xk is three-dimen-

sional unmodeled disturbance vector; yk is the output

position vector; vk is assumed to be Gaussian white noise;

A, B, C, G is the constant matrix.

A prediction model for predicting the behavior of the

ship in time domain N (sampling period) is established, and

the initial conditions are given.

x0 ¼ x

xkþ1 ¼ Axk þ Buk þ Gxk; k ¼ 0; . . .;N � 1
ð7Þ

In practical applications, the input and output constraints

must be taken into account in design of MPC. The dis-

cussion on constrained DP problem can be found in

[20, 22]. This paper will take thruster constraints, working

area constraints, and operational area constraints into

account, weighted linear inequalities is used to represent

the operational area, and weighted quadratic inequalities

are used to represent the working area, as follows:

umin � uk � umax; k ¼ 0; 1; . . .;N � 1

yk ¼ Ckxk þ vk

yk 2 Xk; k ¼ 0; 1; . . .;N � 1

ð8Þ

Assuming all states of the system can be measured, the

basic MPC algorithm of DP vessels is as follows:

1. Establish the predictive model and set the reference

trajectory;

2. Initialization: set the prediction horizon p and control

horizon m, uð�1Þ ¼ 0, xð�1Þ ¼ 0;

3. Measure the state value: at time k� 0, measure xk, xk

and vk, calculate gk and Dxk ¼ xk � xk�1, then predict

the output within future p step and calculate the error

G1ðk þ 1jkÞ and uðkÞ ¼ uðk � 1Þ þ DuðkÞ;
4. Define the performance indices with constrains: set the

above input and output constrains which will be added

into the performance indices, so the predictive output

can track the reference trajectory accurately.

5. Receding optimization: the finite horizon optimization

problem will be solved on line to make the defined

performance indices minimum. At each sampling time

k, repeat the following steps: (a) the state xk is obtained

from the reference system and the sensor, and is the

initial condition of the open loop optimization prob-

lem: x0 ¼ xk; (b) using x0 to solve the open loop finite

time domain optimization problem, the performance

index is minimized, and the optimal control sequence

is obtained: UOPT
N ¼ fuOPT0 ; . . .; uOPTN�1g; (c) the first

component of the sequence will act on system:

uk ¼ uOPT0 .

6. At the subsequent each sampling time, the algorithm

will return (3) to be repeated until the errors between

output and set point are minimized or within the

allowable range.

4 The design of state estimator

As stated above, to implement the MPC algorithm for a DP

system, there exists an essential condition that full state

information must be known. However, not all the states of

DP system can be measured or disturbance and measure-

ment noise exists. Therefore, to achieve better control

precision, a state estimator must be designed to estimate

the state variables on line and then the state estimated will

be used as the input of the MPC controller.

To design the state estimator, first the measurable output

variable equation should be defined as:

yðkÞ ¼ CxðkÞ þ vðkÞ, the measurement value yðkÞ is the

position (surge, sway) and heading (yaw).

Then design the state estimator as follows:

x̂ðk þ 1jkÞ ¼ Ax̂ðkjk � 1Þ þ BuðkÞ þ KðkÞ½yðkÞ � ŷðkjk � 1Þ�
ŷðkjk � 1Þ ¼ Cx̂ðkjk � 1Þ;

ð9Þ

where the first equation is state estimation equation; the

second equation is the optimal linear prediction of the

measurable output yðkÞ.
(7) and (9) make a difference to get the estimation error

~xðk þ 1jkÞ:
~xðk þ 1jkÞ ¼ xðk þ 1jkÞ � x̂ðk þ 1jkÞ

¼ Axk þ Buk þ Gxk

� fAx̂ðkjk � 1Þ þ BuðkÞ þ KðkÞ½yðkÞ � Cx̂ðkjk � 1Þ�g
¼ ½A� KðkÞC�~xðkjk � 1Þ þ Gxk þ KðkÞvðkÞ:

ð10Þ

Using orthogonality theorem: E½~xðk þ 1jkÞyTðkÞ� ¼ 0.

Eff½A� KðkÞC�~xðkjk � 1Þ þ GxðkÞ þ KðkÞtðkÞgyTðkÞg

¼ E
f½A� KðkÞC�~xðkjk � 1Þ þ GxðkÞ þ KðkÞtðkÞg

�fC½x̂ðkjk � 1Þ þ ~xðkjk � 1Þ� þ tðkÞgT

( )

ð11Þ

As Ef~xðkjk � 1Þx̂Tðkjk � 1Þg ¼ 0; tðkÞ, xðkÞ and

~xðkjk � 1Þ orthogonal; tðkÞ, xðkÞ are white noise with zero

mean; so we get the optimal gain matrix KðkÞ:

KðkÞ ¼ ½APðkjk � 1ÞCT þ GSk�½CPðkjk � 1ÞCT þ Rk��1;

ð12Þ
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where Pðkjk � 1Þ ¼ E½~xðkjk � 1Þ~xTðkjk � 1Þ�; Sk ¼ E½xðkÞ
tTðkÞ�; Rk ¼ E½tðkÞtTðkÞ�.

The estimation error variance matrix Pðk þ 1jkÞ can be

calculated by the recurrence equation:

Pðk þ 1jkÞ ¼ E½~xðk þ 1jkÞ~xTðk þ 1jkÞ�
¼ E½f½A� KðkÞC�~xðkjk � 1Þ þ Gxk þ KðkÞvðkÞg
� f½A� KðkÞC�~xðkjk � 1Þ þ Gxk þ KðkÞvðkÞgT �

¼ E½A� KðkÞC�Pðkjk � 1Þ½A� KðkÞC�T þ KðkÞRkK
TðkÞ

þ GQkF
T � GSkK

TðkÞ � KðkÞSTk GT

¼ APðkjk � 1ÞAT � ½APðkjk � 1ÞCT þ GSk�
� ½CPðkjk � 1ÞCT þ Rk��1

� ½CPðkjk � 1ÞAT þ STk G
T � þ GQkG

T ;

ð13Þ

where Qk ¼ E½xðkÞxTðkÞ�.
Therefore the calculation procedures with the optimal

state estimator are defined as:

First, specify the initial conditions xð0Þ and Pð0Þ; then,
respectively, calculate Kð0Þ with Eq. 12, x̂ð1j0Þ with Eq. 9,

Pð1j0Þ with Eq. 13, Kð1Þ with the Pð1j0Þ and (12), x̂ð2j1Þ
with Kð1Þ.

Then repeat the steps above, so the state variable x̂ðk þ
1jkÞ at any time can be predicted.

In other words, theMPC algorithmwith a state estimator is

to use the measurable sequence yð0Þ,yð1Þ… yðkÞ to calculate
the linear optimal estimation x̂ðk þ 1jkÞ so that the estimation

error variance matrix Pðkjk � 1Þ of the estimation error

~xðkjk � 1Þ ¼ xðkjk � 1Þ � x̂ðkjk � 1Þ can be minimized.

5 Simulation analysis

In this section, a certain supply vessel will be used as the

simulation object. The main parameters of the vessel are

given in Table 1.

The bis-scaled system mass matrix M and damping

matrix D for the supply vessel in [23]:

M00 ¼
1:1274 0 0

0 1:8902 �0:0744
0 �0:0744 0:1278

2
4

3
5;

D00 ¼
0:0358 0 0

0 0:1183 �0:0124
0 �0:0041 0:0308

2
4

3
5:

The simulation parameters are set as follows: original

position and heading of vessel g ¼ ½ 0 0 0� , the desired

position and heading r ¼ ½ 10 10 30�� , sampling time is

0.5 s, simulation time 1000 s; the force constraints of surge

and sway are ±5000 KN, the moment constraint of yaw is

±10,000 KN m, the position and heading constraints are

±20 m and ±45�; prediction horizon p = 100, control

horizon m = 5. Then, respectively, simulation on MPC

controller with state estimator (has no constraint), MPC

controller without state estimator (has no constraint), MPC

controller with state estimator (has constraints), and MPC

controller without state estimator (has constraints). The

simulation results are shown in Figs. 3, 4, 5, and 6.

For easy visualization, the simulation times of Figs. 3, 4,

5, and 6 are held only within 300, 100, 300 and 300 s. As

can be seen from the output position results:

1. When without constraints, the MPC controller with the

state estimator can produce larger forces and torque, so

it can track the desired position in relatively short

period of time than that without the state estimator (see

Figs. 3, 4);

2. When with constraints, the MPC controller with the

state estimator can also track the desired position

Table 1 Parameters of the

supply vessel
Ship parameters Value

Length overall 76.2 m

Beam 18.8 m

Depth 8.25 m

Draught 6.25 m

Mass 4200 t

Engine power 3533 kW
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Fig. 3 The position and heading output of the dynamic positioning

ship without constraint
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smoothly and quickly, but it produces some overshoots

in the x- and y-direction, and the fluctuations of the

forces are greater (see Figs. 5, 6);

3. In terms of the control forces and torque: at the

primary stage because of the difference between the

initial position and desired position is too much,

therefore the primary stage requires a lot of forces and

torque to reduce the difference. But when the output

location is equal to the desired location, then the

control forces and torques will be steady, this steady

state process costs a short time.

Therefore, in terms of the simulation results, the MPC

controller with the state estimator is effective and can

achieve the fast dynamic response and has a good robust-

ness. The state estimator can meet the MPC controller with

or without constraints at the same time, and can achieve the

good control quality.

6 Conclusions

In this paper, the MPC algorithm with a state estimator is

proposed. In addition, based on the algorithm, a DP con-

troller is designed to solve the problem when not all the
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Fig. 4 The control input of the dynamic positioning ship without

constraint
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Fig. 5 The position and heading output of the dynamic positioning

ship with constraint
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Fig. 6 The control input of the dynamic positioning ship with

constraint
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states of the system can be measured. The simulation

results show that the controller with the state estimator has

the characteristics of fast, stable, and accurate responses.

At the same time, the results verify the model predictive

controller with the state estimator can very close to the

control performance of the dynamic positioning system

without state estimator. It is scheduled to expand applica-

bility of the MPC algorithm by the platform supply vessel

model (scale of 1:50) with two main propellers and one

bow tunnel thruster in the tank in future.
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